

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Umwelt Kiel Dr.-Hell-Str. 6, 24107 Kiel

WASSERBESCHAFFUNGSVERBAND NORDSCHWANSEN **ESPENISSTRASSE 24** OT LÜTTFELD 24376 KAPPELN

Datum

11.03.2019

Kundennr.

3)

Methode

1502593

PRÜFBERICHT 1933318 - 579755

Auftrag

Parameter sind mit dem Symbol " * " gekennzeichnet.

ISO/IEC 17025:2005 akkreditiert. Ausschließlich

1933318 Wasserwerk Kopperby, Werkausgang - Untersuchung auf

Parameter der Gruppe A und B nach TrinkwV inkl. PSM

Analysennr.

579755 Trinkwasser

Probeneingang

04.03.2019

Probenahme

04.03.2019 08:00

Probenehmer

WBV NORDSCHWANSEN Daniel Krenz

Kunden-Probenbezeichnung

Nordschwansen 3

Entnahmestelle

Wasserwerk Kopperby

Werkausgang

Amtl. Messstellennummer

250000670000000001181

Untersuchungen nach Anlage 2 (ohne Pflanzenschutzmittel-Wirkstoffe und Biozidprodukt-Wirkstoffe) der TrinkwV

Grenzwert Bewertung Einheit Ergebnis Best.-Gr. TrinkwV

Physikalisch-chemische Parameter

Wassertemperatur (vor Ort)	°C	10,3	0		DIN 38404-4 : 1976-12
Anionen					
Bromat (BrO3)	mg/l	<0,0002 (NWG)	0,0005	0,01	DIN EN ISO 11206 : 2013-05
Cyanide, gesamt	mg/l	<0,002 (NWG)	0,005	0,05	DIN EN ISO 14403-2 : 2012-10
Fluorid (F)	mg/l	0,35	0,05	1,5	DIN EN ISO 10304-1 : 2009-07
Nitrat (NO3)	mg/l	2,78	0,5	50	DIN ISO 15923-1 : 2014-07
Nitrit (NO2)	mg/l	0,007	0,005	0,5 6)	DIN ISO 15923-1 : 2014-07

ng/l <0,001	0,001	0,01	DIN EN ISO 17294-2 : 2017-01
ng/l <0,001	0,001	0,005	DIN EN ISO 17294-2 : 2017-01
ng/l <0,001	0,001	0,01 5)	DIN EN ISO 17294-2 : 2017-01
ng/l 0,131	0,01	1	DIN EN ISO 17294-2 : 2017-01
ng/l <0,0003	0,0003	0,003	DIN EN ISO 17294-2 : 2017-01
ng/l <0,0005	0,0005	0,05	DIN EN ISO 17294-2 : 2017-01
mg/l < 0,003	0,003	2 5)	DIN EN ISO 17294-2 : 2017-01
ng/l <0,002	0,002	0,02 5)	DIN EN ISO 17294-2 : 2017-01
ng/l <0,0001	0,0001	0,001	DIN EN ISO 12846 : 2012-08
ng/l <0,001	0,001	0,01	DIN EN ISO 17294-2 : 2017-01
ıg/l 0,01	0,01	10	DIN EN ISO 17294-2 : 2017-01
asserstoffe (LHKW)			
ng/l <0,00010	0,0001	0,01	DIN EN ISO 10301 : 1997-08
ng/l <0,00020	0,0002	0,01	DIN EN ISO 10301 : 1997-08
ng/l <0,00020	0,0002	0,01	DIN EN ISO 10301 : 1997-08
ng/l <0,00030	0,0003	0,01	DIN EN ISO 10301 : 1997-08
ng/l n.b.		0,05 7)	Berechnung
mg/l <0,00020	0,0002		DIN EN ISO 10301 : 1997-08
וווווווווווווווווווווווווווווווווווווו	19g/ 0,001 19g/ 0,003 19g/ 0,0003 19g/ 0,0005 19g/ 0,0001 19g/ 0,001 19g/ 0,001 19g/ 0,001 19g/ 0,0002 19g/ 0,0002 19g/ 0,00020 19g/ 0,00020 19g/ 0,00030 0,00030 19g/ 0,00030	10g/l 10,001 0,001 0,001 0,001 0,001 0,001 0,001 0,0003 0,0003 0,0005 0,0005 0,0005 0,0005 0,0002 0,002 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0002 0,0002 0,0002 0,0002 0,0002 0,0003	No. No.

Leichthachtige Halogenkom	CHWassersto	ic (Lilitar)			
Trichlormethan	mg/l	<0,00010	0,0001	0,01	DIN EN ISO 10301 : 1997-08
Bromdichlormethan	mg/l	<0,00020	0,0002	0,01	DIN EN ISO 10301 : 1997-08
Dibromchlormethan	mg/l	<0,00020	0,0002	0,01	DIN EN ISO 10301 : 1997-08
Tribrommethan	mg/l	<0,00030	0,0003	0,01	DIN EN ISO 10301 : 1997-08
Summe THM (Einzelstoffe)	mg/l	n.b.		0,05 7)	Berechnung
Trichlorethen	mg/l	<0,00020	0,0002		DIN EN ISO 10301 : 1997-08

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum

Grenzwert Bewertung

11.03.2019

DIN EN ISO 17993: 2004-03

Berechnung

DIN EN ISO 17993: 2004-03

Kundennr.

N A = 4l= = -l =

1502593

PRÜFBERICHT 1933318 - 579755

		Einheit	Ergebnis	BestGr.	TrinkwV	3)	Methode
מכ	Tetrachlorethen	mg/l	<0,00010	0,0001			DIN EN ISO 10301 : 1997-08
_	Tetrachlorethen und Trichlorethen	mg/l	n.b.		0,01		Berechnung
2	1,2-Dichlorethan	mg/l	<0,0005	0,0005	0,003		DIN EN ISO 10301 : 1997-08
2	Vinylchlorid	mg/l	<0,0001	0,0001	0,0005		DIN EN ISO 10301 : 1997-08
=	BTEX-Aromaten						
5	Benzol	mg/l	<0,0001	0,0001	0,001		DIN 38407-43 : 2014-10
5	Polycyclische aromatische Kol	nlenwassersto	ffe (PAK)		the second		
5	Benzo(b)fluoranthen	mg/l	<0,000002	0,000002			DIN EN ISO 17993 : 2004-03
Ď	Benzo(k)fluoranthen	mg/l	<0,000002	0,000002			DIN EN ISO 17993 : 2004-03
ט	Benzo(ahi)perylen	mg/l	<0,000002	0,000002			DIN EN ISO 17993 : 2004-03

<0.000002

<0.000002

n h

0,000002

0,000002

0.0001

0.00001

Berechnete Werte

Indeno(123-cd)pyren

Benzo(a)pyren

PAK-Summe (TrinkwV 2001)

akkreditierte Parameter sind mit dem Symbol " * " gekennzeichnet.

nicht

Ausschließlich

ISO/IEC 17025:2005 akkreditiert.

sind

Die in diesem Dokument berichteten Parameter

Nitrat/50 + Nitrit/3 mg/l **0,058** 0,017 1 Berechnung

5) Grundlage für den Grenzwert ist eine für die wöchentliche Wasseraufnahme durch den Verbraucher repräsentative Probe.

6) Am Wasserwerksausgang gilt ein Grenzwert von 0,1 mg/l.

Werden am Wasserwerksausgang 0,01 mg/l eingehalten, erübrigt sich die Überprüfung im Versorgungsnetz.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Grenzwert TrinkwV: Grenzwert/Anforderung der "Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV)", Stand 3.1.2018

Die Probenahme erfolgte gemäß: DIN ISO 5667-5 : 2011-02; DIN EN ISO 19458 : 2006-12

F1-1-14

mg/l

mg/l

mg/l

Das Wasser entspricht, soweit untersucht, den Anforderungen der Trinkwasserverordnung.

Beginn der Prüfungen: 04.03.2019 Ende der Prüfungen: 11.03.2019 16:31

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Prüfergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der ISO/IEC 17025:2005, Abs. 5.10.1 berichtet.

AGROLAB Umwelt Kiel Herr Dr. Holst, Tel. 0431/22138-555 Kundenbetreuung Trinkwasser, Email: juergen.holst@agrolab.de

Verteiler

KREIS SCHLESWIG-FLENSBURG - FACHDIENST GESUNDHEIT

Seite 2 von 8

DAKS

Deutsche

Avkreditiarun asstella

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Umwelt Kiel Dr.-Hell-Str. 6, 24107 Kiel

WASSERBESCHAFFUNGSVERBAND NORDSCHWANSEN **ESPENISSTRASSE 24** OT LÜTTFELD 24376 KAPPELN

Datum

11.03.2019

Kundennr.

1502593

PRÜFBERICHT 1933318 - 579755

Auftrag

Parameter sind mit dem Symbol " * " gekennzeichnet.

1933318 Wasserwerk Kopperby, Werkausgang - Untersuchung auf

Parameter der Gruppe A und B nach TrinkwV inkl. PSM

Analysennr.

579755 Trinkwasser

Probeneingang Probenahme

04.03.2019 04.03.2019 08:00

Untersuchungen nach Anlage 2 Teil I Nr. 10 und 11 (Pflanzenschutzmittel-Wirkstoffe und Biozidprodukt-Wirkstoffe) der TrinkwV

Probenanine		WDV NODDSCHWANSEN Daniel Kronz							
Probenehmer Kunden-Probenbezeich Entnahmestelle		WBV NORDSCHWANSEN Daniel Krenz Nordschwansen 3							
Kunden-Probenbezeich									
Entnahmestelle		Wasserwerk Kopperby							
		/erkausgang							
Amtl. Messstellennumm	er 2	50000670000000001	181						
Untersuchungen n	ach Anlage 2 T	eil I Nr. 10 und 1	1 (Pflan	zensch	nutzmittel-Wirkstoffe und				
Biozidprodukt-Wir			(
Bioziapi odane vin	notono, doi in			Grenzwert	Bewertung				
	Einheit	Ergebnis		TrinkwV	3) Methode				
Pflanzenschutzmittel	und Biozidprodukt	te (PSM)							
AMPA	mg/l	<0,00002	0,00002	0,0001	DIN ISO 16308 : 2017-09(BB) u)				
Atrazin	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-11 u) (mod.)(BB)				
Amtl. Messstellennumm Untersuchungen n Biozidprodukt-Wir Pflanzenschutzmittel u AMPA Atrazin Bentazon Bromacil Chloridazon	mg/l	<0,0000150 (NWG)	0,00002	0,0001	DIN EN ISO 11369 : 1997-11 u)				
Bontazon				1 2 2	(mod.)(BB) DIN EN ISO 11369 : 1997-11 u)				
Bromacil	mg/l	<0,0000150 (NWG)	0,00003	0,0001	(mod.)(BB)				
Chloridazon	mg/l	<0,00001 (NWG)	0,00003	0,0001	DIN EN ISO 11369 : 1997-11 u) (mod.)(BB)				
Chlortoluron	mg/l	<0,00001 (NWG)	0,00003	0,0001	DIN EN ISO 11369 : 1997-11 u) (mod.)(BB)				
Clothianidin	mg/l	<0,00001 (NWG)	0,00003	0,0001	DIN EN ISO 11369 : 1997-11 (mod.)(BB)				
Desethylatrazin	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-11 u)				
Desethylterbuthylazin	mg/l	<0,00002	0,00002	0,0001	(mod.)(BB) DIN EN ISO 11369 : 1997-11 u)				
Designation		<0,00002		0,0001	(mod.)(BB) DIN EN ISO 11369 : 1997-11				
Desisopropylatrazin	mg/l				(mod.)(BB)				
Difenoconazol	mg/l	<0,000015 (NWG)	0,00003	0,0001	DIN EN ISO 11369 : 1997-11 uj (mod.)(BB)				
Dimethachlor	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-11 uj (mod.)(BB)				
Diuron	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-11 (mod.)(BB)				
Fluquinconazol	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-11 u (mod.)(BB)				
Glyphosat	mg/l	<0,00001 (NWG)	0,00003	0,0001	DIN ISO 16308 : 2017-09(BB) u				
Hexazinon	mg/l	<0,0000250 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-11 u (mod.)(BB)				
Imidacloprid	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-11 u (mod.)(BB)				
Chlortoluron Clothianidin Desethylatrazin Desethylterbuthylazin Desisopropylatrazin Difenoconazol Dimethachlor Diuron Fluquinconazol Glyphosat Hexazinon Imidacloprid Isoproturon MCPA	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-11 u (mod.)(BB)				
MCPA	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-11 u (mod.)(BB)				

Seite 3 von 8

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum

11.03.2019

PRÜFBERICHT 1933318 - 579755

PRÜFBERICHT 1933318 - 579	755					
	Einheit	Ergebnis	BestGr.	Grenzwert TrinkwV	Methode	
Mecoprop (MCPP)	mg/l	<0,00001 (NWG)	0,00002	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metazachlor	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metolachlor (R/S)	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Napropamid	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Oxadixyl	mg/l	<0,00003 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Simazin	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Terbuthylazin	mg/l	<0,00002	0,00002	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Thiacloprid	mg/l	<0,000015 (NWG)	0,00003	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Tolylfluanid	mg/l	<0,00005	0,00005	0,0001	DIN EN ISO 6468 : 1997-02 (mod.)(BB)	
1-(3,4-Dichlorphenyl)-3-Methyl-Harnstoff	mg/l	<0,000030 (NWG)	0,00005	0,0001	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
PSM-Summe	mg/l	n.b.		0,0005	Berechnung	
Nicht relevante Metabolite (nr		10.000000	0.00000	0.000.10)	DIN EN ISO 11369 : 1997-1	1
Desphenyl-Chloridazon	mg/l	<0,000020	0,00002	0,003 10)	(mod.)(BB)	
Dimethachlor-Säure (CGA50266)	mg/l	<0,000010 (NWG)	0,000025	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Dimethachlor-Sulfonsäure (CGA354742)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metazachlor-Säure (BH479-4)	mg/l	<0,000010 (NWG)	0,00002	0,001 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metazachlor-Sulfonsäure (BH479-8)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metolachlor-Säure (R/S)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Metolachlor-Sulfonsäure (R/S)	mg/l	<0,000010 (NWG)	0,000025	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
N,N-Dimethylsulfamid (DMS)	mg/l	<0,000020	0,00002	0,001 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	
2,6-Dichlorbenzamid	mg/l	<0,00002	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-1 (mod.)(BB)	1
Summe nicht relevante Metabolite (nrM)	mg/l	n.b.			Berechnung	

THORIE TOTO TALLED IN CLASSIFIC (TILL						
Desphenyl-Chloridazon	mg/l	<0,000020	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Dimethachlor-Säure (CGA50266)	mg/l	<0,000010 (NWG)	0,000025	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Dimethachlor-Sulfonsäure (CGA354742)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Metazachlor-Säure (BH479-4)	mg/l	<0,000010 (NWG)	0,00002	0,001 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Metazachlor-Sulfonsäure (BH479-8)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Metolachlor-Säure (R/S)	mg/l	<0,000010 (NWG)	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Metolachlor-Sulfonsäure (R/S)	mg/l	<0,000010 (NWG)	0,000025	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
N,N-Dimethylsulfamid (DMS)	mg/l	<0,000020	0,00002	0,001 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
2,6-Dichlorbenzamid	mg/l	<0,00002	0,00002	0,003 10)	DIN EN ISO 11369 : 1997-11 (mod.)(BB)	u)
Summe nicht relevante Metabolite (nrM)	mg/l	n.b.			Berechnung	

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Grenzwert TrinkwV: Grenzwert/Anforderung der "Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV)", Stand 3.1.2018

Die Probenahme erfolgte gemäß: DIN ISO 5667-5 : 2011-02; DIN EN ISO 19458 : 2006-12

u) Vergabe an ein akkreditiertes Agrolab-Gruppen-Labor

Agrolab-Gruppen-Labore

Untersuchung durch

(BB) AGROLAB Standort Eching / Ammersee, Moosstrasse 6 a, 82279 Eching / Ammersee, für die zitierte Methode akkreditiert nach ISO/IEC 17025:2005, Akkreditierungsurkunde: D-PL-14289_01_00

DIN EN ISO 11369: 1997-11 (mod.); DIN EN ISO 6468: 1997-02 (mod.); DIN ISO 16308: 2017-09

Seite 4 von 8

berichteten

Dokument

in diesem

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum

11.03.2019

Kundennr.

1502593

PRÜFBERICHT 1933318 - 579755

Das Wasser entspricht, soweit untersucht, den Anforderungen der Trinkwasserverordnung.

Hinweis zu Desethylterbuthylazin

= Terbuthylazin-desethyl

Hinweis zu Desisopropylatrazin

= Desethylsimazin (=Atrazin-desisopropyl)

Hinweis zu Parameter 1-(3,4-Dichlorphenyl)-3-Methyl-Harnstoff

identisch mit: Desmethyl-Diuron

Beginn der Prüfungen: 04.03.2019 Ende der Prüfungen: 11.03.2019 16:31

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Prüfergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der ISO/IEC 17025:2005, Abs. 5.10.1 berichtet.

AGROLAB Umwelt Kiel Herr Dr. Holst, Tel. 0431/22138-555 Kundenbetreuung Trinkwasser, Email: juergen.holst@agrolab.de

Verteiler

KREIS SCHLESWIG-FLENSBURG - FACHDIENST GESUNDHEIT

DAKKS

Deutsche

Akkeditierungsstelle

Seite 5 von 8

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

AGROLAB Umwelt Kiel Dr.-Hell-Str. 6, 24107 Kiel

WASSERBESCHAFFUNGSVERBAND NORDSCHWANSEN **ESPENISSTRASSE 24** OT LÜTTFELD 24376 KAPPELN

Datum

11.03.2019

Kundennr.

1502593

PRÜFBERICHT 1933318 - 579755

Auftrag

sind mit dem Symbol " * " gekennzeichnet.

1933318 Wasserwerk Kopperby, Werkausgang - Untersuchung auf

Parameter der Gruppe A und B nach TrinkwV inkl. PSM

Analysennr.

579755 Trinkwasser

Probeneingang

04.03.2019

Probenahme

04.03.2019 08:00

Probenehmer

WBV NORDSCHWANSEN Daniel Krenz

Kunden-Probenbezeichnung

Nordschwansen 3

Entnahmestelle

Wasserwerk Kopperby

Werkausgang

in diesem Dokument berichteten Parameter sind gemäß ISO/IEC 17025:2005 akkreditiert. Ausschließlich nicht akkreditierte Amtl. Messstellennummer

250000670000000001181

Untersuchungen aus Anlage 1 (mikrobiologische Parameter) und/oder Anlage 3 (Indikatorparameter) der TrinkwV sowie Chemische Vollanalyse Grenzwert Bewertung

	Einheit	Ergebnis	BestGr.	TrinkwV	3)	Methode
Physikalisch-chemische Para	meter					
Wassertemperatur (vor Ort)	°C	10,3	0			DIN 38404-4 : 1976-12
Leitfähigkeit bei 25°C (Labor)	μS/cm	788	10	2790		DIN EN 27888 : 1993-11
pH-Wert (Labor)		7,59	2	6,5 - 9,5		DIN EN ISO 10523 : 2012-04
Temperatur (Labor)	°C	17,4	0			DIN 38404-4 : 1976-12
Trübung (Labor)	NTU	0,07	0,05	1		DIN EN ISO 7027 : 2000-04
SAK 436 nm (Färbung, quant.)	m-1	0,18	0,1	0,5		DIN EN ISO 7887 : 2012-09
pH-Wert (bei SAK 436-Messung)		7,80	0			DIN EN ISO 10523 : 2012-04
Temperatur (bei SAK 436-Messung)	°C	19,5	0			DIN 38404-4 : 1976-12
Sensorische Prüfungen						
Geruch (vor Ort)		ohne				DIN EN 1622 : 2006-10 (Anhang C)

Conconconc raidingon		
Geruch (vor Ort)	ohne	DIN EN 1622 : 2006-10 (Anhang C)
Geschmack organoleptisch (vor Ort)	ohne	DIN EN 1622 : 2006-10 (Anhang C)
n l	Fremdgeschmack	

mg/l	75	1	250	DIN ISO 15923-1 : 2014-07
mg/l	370,4	0,6		Berechnung
mg/l	2,78	0,5	50	DIN ISO 15923-1 : 2014-07
mg/l	0,007	0,005	0,5 6)	DIN ISO 15923-1 : 2014-07
mg/l	0,04	0,03	6,7 4)	DIN ISO 15923-1 : 2014-07
mmol/l	6,12	0,01		DIN 38409-7 : 2005-12
°C	18,0	0		DIN 38404-4 : 1976-12
mg/l	5,4	1	250	DIN ISO 15923-1 : 2014-07
	mg/l mg/l mg/l mg/l mmol/l	mg/l 370,4 mg/l 2,78 mg/l 0,007 mg/l 0,04 mmol/l 6,12 °C 18,0	mg/l 370,4 0,6 mg/l 2,78 0,5 mg/l 0,007 0,005 mg/l 0,04 0,03 mmol/l 6,12 0,01 °C 18,0 0	mg/l 370,4 0,6 mg/l 2,78 0,5 50 mg/l 0,007 0,005 0,5 6) mg/l 0,04 0,03 6,7 4) mmol/l 6,12 0,01 °C 18,0 0

Sullat (304)	mgn	0,1		200	
Kationen					
Calcium (Ca)	mg/l	85,9	0,1		DIN EN ISO 17294-2 : 2017-01
Magnesium (Mg)	mg/l	14,3	0,1		DIN EN ISO 17294-2 : 2017-01
Natrium (Na)	mg/l	60,0	0,1	200	DIN EN ISO 17294-2 : 2017-01
Kalium (K)	mg/l	4,87	0,1		DIN EN ISO 17294-2 : 2017-01
Ammonium (NH4)	mg/l	0,027	0,02	0,5	DIN ISO 15923-1 : 2014-07
)					

Seite 6 von 8

Geschäftsführer Dr. Paul Wimmer Dr. Jens Radicke Dr. Carlo C. Peich

DAkkS

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum

Grenzwert Bewertung

11.03.2019

Kundennr.

1502593

PRÜFBERICHT 1933318 - 579755

	Einneit	Ergebnis BestGr.	Irinkwy	3)	Methode
Summarische Parameter					
TOC	mg/l	2,5 0,5			DIN EN 1484 : 199
A					

97-08 Anorganische Bestandteile DIN EN ISO 17294-2: 2017-01 Aluminium (AI) mg/l <0,02 0.02 0,2 DIN EN ISO 17294-2: 2017-01 Eisen (Fe) mg/l <0,010 (+) 0,01 0,2 0.05 DIN EN ISO 17294-2: 2017-01 Mangan (Mn) <0,002 (NWG) 0.005 ma/l

Gasförmige Komponenten

Cacioningo itempenenten			
Basekapazität bis pH 8,2	mmol/l	0,29 0,01	DIN 38409-7 : 2005-12
Temperatur bei Titration KB 8,2	°C	18,0 0	DIN 38404-4 : 1976-12
Sauerstoff (O2) gelöst	mg/l	9,7 0,1	DIN EN 25813 : 1993-01

Berechnete Werte

dem Symbol " * " gekennzeichnet.

sind !

ISO/IEC 17025:2005 akkreditiert. Ausschließlich nicht akkreditierte Parameter

berichteten Parameter sind gemäß

Dokument

in diesem

Derectifiete werte					
Nitrat/50 + Nitrit/3	mg/l	0,058	0,017	1	Berechnung
Gesamthärte (Summe Erdalkalien)	mmol/l	2,73	0,05		Berechnung aus Ca, Mg
Gesamthärte	°dH	15,3	0,25		Berechnung
Gesamthärte (als Calciumcarbonat)	mmol/l	2,73	0,025		Berechnung aus Summe Erdalkalien
Carbonathärte	°dH	15,3			Berechnung
Ca-Härte	°dH	12,0			Berechnung
Mg-Härte	°dH	3,3			Berechnung
Nichtcarbonathärte	°dH	0	0		Berechnung
Scheinb. Carbonathärte	°dH	1,8	0		Berechnung
Härtebereich		hart			Waschmittelgesetz 2007
Anionen-Äquivalente	mmol/l	8,41			DVWK-Richtlinie
Kationen-Äquivalente	mmol/l	8,20		7.2	DVWK-Richtlinie
lonenbilanz	%	-2.5			DVWK-Richtlinie

Berechnete Werte - Kalk-Kohlensäure-Gleichgewicht

pH bei Bewertungstemperatur (pHtb)		7,65		DIN 38404-10 : 2012-12
pH bei Calcitsätt. d. Calcit (pHc tb)		7,33		DIN 38404-10 : 2012-12
delta-pH		0,33		DIN 38404-10 : 2012-12
Sättigungsindex Calcit (SI)		0,43		DIN 38404-10 : 2012-12
Calcitlösekapazität	mg/l	-33	5 8)	DIN 38404-10 : 2012-12
Freie Kohlensäure (CO2)	mg/l	15		DIN 38404-10 : 2012-12

Mikrobiologische Untersuchungen

-	mind colored contendent in	j - · ·				
3	Koloniezahl bei 20°C	KBE/1ml	0	0	100	TrinkwV §15 Absatz (1c)
5	Koloniezahl bei 36°C	KBE/1ml	0	0	100	TrinkwV §15 Absatz (1c)
מ	E. coli	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
5	Coliforme Bakterien	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
5	Enterokokken	KBE/100ml	0	0	0	DIN EN ISO 7899-2 : 2000-11

4) Gemäß "Bekanntmachung der Liste der Aufbereitungsstoffe und Desinfektionsverfahren gemäß § 11 der Trinkwasserverordnung" beträgt die zulässige Zugabe für die verschiedenen Phosphatverbindungen 2,2 mg/l P

6) Am Wasserwerksausgang gilt ein Grenzwert von 0,1 mg/l.

8) Bei der Mischung von Wasser aus zwei oder mehr Wasserwerken darf die Calcitlösekapazität im Verteilungsnetz den Wert von 10 mg/l nicht überschreiten.

9) Die Anforderung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der pH-Wert am Werkausgang größer oder gleich 7,7 ist.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Des Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Grenzwert TrinkwV: Grenzwert/Anforderung der "Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV)", Stand 3.1.2018

Seite 7 von 8

Deutsche

Iac MRA

Dr.-Hell-Str. 6, 24107 Kiel, Germany www.agrolab.de

Datum

11.03.2019

Kundennr.

1502593

PRÜFBERICHT 1933318 - 579755

Die Probenahme erfolgte gemäß: DIN ISO 5667-5: 2011-02; DIN EN ISO 19458: 2006-12

Das Wasser entspricht, soweit untersucht, den Anforderungen der Trinkwasserverordnung.

Beginn der Prüfungen: 04.03.2019 Ende der Prüfungen: 11.03.2019 16:31

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Prüfergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der ISO/IEC 17025:2005, Abs. 5.10.1 berichtet.

AGROLAB Umwelt Kiel Herr Dr. Holst, Tel. 0431/22138-555 Kundenbetreuung Trinkwasser, Email: juergen.holst@agrolab.de

<u>Verteiler</u>

KREIS SCHLESWIG-FLENSBURG - FACHDIENST GESUNDHEIT

